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An experimental investigation of MHD
quasi-two-dimensional turbulent shear flows
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Laboratoire EPM Madylam, ENSHMG BP 95, 38402 Saint Martin d’Heres Cedex, France

(Received 17 October 2000 and in revised form 9 July 2001)

An extensive experimental study is carried out to examine the properties of a quasi-
two-dimensional MHD turbulent shear flow. Axisymmetric shear of a mercury layer
is enforced by the action of a steady vertical magnetic field and a radial horizontal
electric current flowing between a ring set of electrodes and a cylindrical wall. This
shear layer is unstable, and the properties of the turbulent flow are studied for a wide
range of Hartmann (up to 1800) and Reynolds numbers (up to 106). The mean velocity
profiles exhibit a turbulent free shear layer, of thickness larger than that predicted
by the laminar theory by two orders of magnitude. The profiles yield the expected
linear dependence between the total angular momentum and the electric current
when the magnetic field is large enough, but demonstrate a systematic deviation when
it is moderate (Ha . 250). The quasi-two-dimensional turbulence is characterized
by an energy transfer towards the large scales, which leads to a relatively small
number of large coherent structures. The properties of these structures result from
the competition between the energy transfer and the Joule dissipation within the
Hartmann layers. In the intermediate range of wavenumbers (k` < k < ki, where k`
is the integral-length-scale wavenumber and ki the injection wavenumber), the energy
spectra exhibit a power law close to k−5/3 when the Joule dissipation is weak and
close to k−3 when it is significant. The properties of the turbulent flow in this latter
regime depend on only one non-dimensional parameter, the ratio (Ha/Re)(l⊥/h)2 (Ha
is the Hartmann number, Re the Reynolds number based on the cell radius, l⊥ a
typical transverse scale, and h the layer width).

1. Introduction
The tendency of MHD flows on the laboratory scale, where the magnetic Reynolds

number is much smaller than unity (Rm = µσUL� 1, where µ denotes the magnetic
permeability, σ the electrical conductivity, U and L are a typical velocity and length
scale respectively), to form quasi-two-dimensional structures is now well understood
(e.g. Moreau 1990). MHD flows subject to a sufficiently strong uniform magnetic
field (flows around bodies, Hunt & Ludford 1967, Mück et al. 2000; buoyancy-
driven flows, Alboussière et al. 1997, Davoust et al. 1999) exhibit this behaviour,
which may be understood as reminiscent of Alfvén wave propagation when Rm
becomes very small. Sommeria & Moreau (1982) showed that this Alfvén wave
propagation degenerates into a unidirectional diffusion in the magnetic field direction
with a magnetic diffusivity of Dm = (σB2/ρ)l2⊥. The time scale characteristic of the
establishment of two-dimensionality between Hartmann walls which are a distance
h apart is τ2D = (ρ/σB2)(h2/l2⊥) (B stands for the magnetic field intensity and ρ for
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fluid density). Note that the first qualitative experimental evidence of this behaviour
was given by Lenhert (1955) more than 30 years ago.

In the particular case of turbulence, the tendency of an initially three-dimensional
turbulent flow to become two-dimensional was first observed by Kolesnikov & Tsi-
nober (1972). But the most specific experiment to investigate this phenomenon was
performed by Alemany et al. (1979), who suggested a first theoretical interpretation
and derived the main scaling laws, in particular the ratio between the parallel and
perpendicular length scales, evolving with time (or with distance from the grid that
generates the turbulence) as l‖/l⊥ = (σB2t/ρ)1/2. They also numerically modelled
the development of this anisotropy, based on an EDQNM formulation adapted to
the MHD equations, which was in good agreement with their experimental results.
Davidson (1997) stated that this evolution towards a quasi-two-dimensional regime
is a consequence of the invariance of the angular momentum component parallel
to the magnetic field, whereas the perpendicular components decay exponentially
(' exp(σB2t/ρ)).

Neither these experiments (e.g. Alemany et al. 1979), nor the theories (Alemany et al.
1979 and Davidson 1997) considered the Hartmann walls, which are likely to limit the
elongation of the turbulent eddies in the magnetic field direction. Therefore, in these
first investigations the induced electric current cannot be zero and the energy decay
by the Joule effect remains important and finally leads to a full suppression of the
turbulence. But, in the presence of insulating Hartmann walls, the two-dimensionality
may be well established after the time τ2D (Sommeria & Moreau 1982). The electric
current within the core of the turbulent flow disappears and the only remaining
dissipation takes place within the thin Hartmann layers present at both ends of the
eddies. The thickness of this layer in which the velocity exponentially approaches zero
is (1/B)

√
ρν/σ (ν denotes the viscosity which controls the dissipation at the same rate

as the electric resistivity). The Hartmann-layer damping time scale τH = (h/B)
√
ρ/σν

(Sommeria & Moreau 1982) may be much longer than the Joule time scale of
initially isotropic turbulence τJ = σ/ρB2. Therefore, a high level of quasi-steady two-
dimensional turbulence persists for a very long time as evidenced by Lielausis (1975).
The turbulence level and its properties must be such that they allow a global balance
between the energy input due to the instability of the mean flow and the Hartmann
dissipation.

The experimental evidence of an inverse energy cascade in a quasi-two-dimensional
and almost homogeneous turbulence was given by Sommeria (1986). The only shear
in the flow was located along the wall parallel to the magnetic field within a thin
layer, where accurate measurements were difficult to realize. So far, the only experi-
ments on MHD turbulent shear flows are those performed by Kljukin & Kolesnikov
(1989). They provide interesting data concerning the mean velocity distributions and
correlations of velocity fluctuations. But, no information is available about the energy
spectra and the development of coherent structures fed by the energy transfer towards
the large scales. Experimental data should be of great interest in understanding the
physics of these quasi-two-dimensional MHD turbulent shear flows and checking the
validity of the recent theoretical work (Pothérat, Sommeria & Moreau 2000; Mück
et al. 2000). This is precisely the purpose of the MATUR (MAgnetohydrodynamic
TURbulence) experiment in Grenoble. The first results obtained from MATUR under
a moderate magnetic field (B = 0.17 T) were presented at the 1997 Turbulent Shear
Flow Conference and recently published in Alboussière, Uspenski & Moreau (1999).

The main objectives of the present paper are firstly to provide unique experimental
data on MHD turbulent shear flows in a wide range of Ha (B from 0.5 to 6 T) and Re
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(current intensity I from 10 to 70 A) numbers, which are of crucial importance for the
validation of either numerical or theoretical predictions and, secondly, to highlight
the important role of the Hartmann layer which dissipates the kinetic energy by
the Joule effect and viscosity. It is shown that, when it dominates the dissipation
within the other boundary layers (along walls parallel to the magnetic field), at each
wavenumber within the inertial range, this Hartmann dissipation balances the inertial
inverse flux of energy. This results in a k−3 energy spectra.

A short description of the apparatus and the flow conditions in the MATUR
cell is given in § 2. Particular attention is given to the modifications dealing with
the high magnetic field (other information can be found in Alboussière et al. 1999).
Some comments on the diagnostic technique and the data acquisition system are also
presented.

Section 3 presents an analysis of the relevant time scales, highlighting those of
specific interest for a high magnetic field. The main properties of the mean flow in
the unsteady as well as in the quasi-steady regimes are described and discussed in § 4,
and the properties of the turbulent velocity fluctuations in the quasi-steady regime
are analysed in § 5, followed by some concluding remarks.

2. The experimental set-up
2.1. General description

The MATUR cell is a section of a circular cylinder of vertical axis with an internal
radius of R = 11 cm and a depth of h = 1 cm, filled with mercury (see Fig. 1). The
bottom plate is electrically insulating, except where small electrodes are inserted. The
upper surface is an electrically insulating cover with a mechanism for filling the cell
with mercury after a careful cleaning of the cell. The cylindrical wall is made of
copper and maintained at a constant and well-controlled temperature by a water
cooling system. The internal surface of the wall is protected from the mercury by an
electrochemical deposit of nickel. A final gold coating on this surface, which is used
as a cathode, ensures a good electric contact with the mercury.

Very small electrodes (1 mm diameter and 1.42 mm apart) are inserted into the
bottom plate through holes machined along two concentric circles located 5.4 cm
(medium electrodes) and 9.3 cm (external electrodes) away from the cell centre. One
of the two circles is used as the anode. A precisely controlled DC current is supplied
by a current generator and passes through the mercury from the anode to the wall.
Special care is taken that the parallel circuits between the generator and each electrode
have exactly the same electric resistance, leading to a uniformly distributed electric
current along the electrode ring. The use of a large number of small electrodes instead
of a continuous electrode ring is essential to avoid an electrically conducting circuit at
a given electric potential (the continuous electrode ring would induce a strong local
damping, whereas this effect is minimized on the scale of each individual electrode).
Provided the Hartmann number is large enough (Ha� 1, this is always the case), the
electric current intensity I divides in two equal parts (this partition takes place within
the free shear layer located just above the electrodes) crossing the two symmetric
Hartmann layers. Therefore, the fluid annular domain located between the selected
circular electrodes and the cathode (Ri < r < R) is driven in rotation by the Lorentz
force, while the central fluid domain (0 < r < Ri) is entrained by friction within the
free shear layer. It is one of the well-established properties of the Hartmann layer
that the core mean velocity Uθ is proportional to the current per unit length within
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Figure 1. (a) Sketch of the experimental set up: 1. free shear layer; 2. wall shear layer; 3. Hartmann
layers; 4. ring of electrodes. (b) Upper view of the bottom plate showing the two electrode rings
and the potential probes.

the Hartmann layer (I/4πr), so that

Uθ =
I

4πr
√
σρν

. (2.1)

Therefore, the electric current I appears as the main control parameter, while the
magnetic field B mainly acts in establishing the two-dimensionality within the core
and controlling the dissipation within the Hartmann layers. Between the moving fluid
annulus and the internal fluid domain, the shear layer should have a thickness varying
as hHa−1/2 according to the laminar theory (Hunt & Ludford 1967). But, in this range
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of parameters (I > a few amps), instabilities develop across this layer where the Joule
damping is quite limited because of the quasi-two-dimensionality. These instabilities
are the source of the turbulence. In fact, the MATUR experiment could be used to
observe and characterize this instability, but this is not the purpose of this paper. It is
clear from our measurements, however, that instability starts at quite small values of
the electric current (I . 1 A) and that above 10 A a well-established turbulent regime
sets in.

The central part of the bottom plate is made of thick copper (4 cm diameter),
electrically insulated from the mercury, and may be uniformly heated at a given
power. This allows an investigation of the turbulent transport of a scalar quantity,
such as the temperature, from the central part of the cell towards the external wall
which is maintained at a constant temperature.

2.2. Measurement techniques

The velocity measurements are performed with a large number of electric potential
probes (up to 140 as shown in Fig. 1) inserted into the bottom plate. In fact,
it is well known that, when Ha � 1, the electric potential only has a negligible
variation both through the quasi-two-dimensional core and the Hartmann layers.
Therefore, the probes located in the plane of the Hartmann wall record the same
electric potential as if they were in the turbulent core flow. The electrodes and probes
have a non-negligible influence, because they yield a non-zero electric conductance
to the wall and contribute to some extra damping of the flow. This effect which is
quite small, because the Hartmann number based on the electrodes/probes diameter
is small, is acceptable. In fact, there is a tendency to form some MHD columns
similar to the Taylor columns on the scale of each electrode, but their diameters
are so small that these columns cannot extend from one Hartmann wall to the
other. While they stay imbedded within the Hartmann layer, their influence remains
negligible.

The key idea of the measuring technique is the property of MHD quasi-two-
dimensional core flows according to which Ohm’s law is reduced to E + u×B = 0 at
the first order of Ha−1. Also, across the Hartmann layer the electric potential has a
negligible variation of the order of Ha−2 (Moreau 1990). Then, the two components
of the core velocity u can be derived from the two components of the local electric
field using the relation

ur, uθ =
1

B

(
−1

r

∂ϕ

∂θ
,
∂ϕ

∂r

)
, (2.2)

where uθ and ur are the angular and radial components respectively, θ and r denote
the angular and radial coordinates, ϕ is the electric potential. This technique is
quite accurate especially for high magnetic field intensity B, where the signal to
noise ratio is above 100. The output signal is systematically amplified thanks to
a very low-noise amplification system available in our laboratory (see Davoust et
al. 1999). It must be noted that this diagnostics has no inertia since the electric
potential at the wall instantaneously follows the fluid velocity and does not require
any calibration.

We also compared these velocity measurements with results from an ultrasonic
Doppler velocity measurement technique, which allowed us to check the quasi-two-
dimensionality of the flow and confirmed the validity of our measurement procedure.
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B = 0.5 T B = 5 T
(Ha = 150) (Ha = 1500)

τJ =
ρ

σB2
(s) 10−2 10−4

τ2D =
ρ

σB2

h2

l2⊥
(s) 10−1 10−3

τtu =
l⊥
U

(s) 1 1

τH =
h

B

√
ρ

σν
(s) 10 1

τν =
l2⊥
ν

(s) 103 103

Table 1. Key time scales

3. Time scales of interest in a high magnetic field
In the present experiment, at least five important phenomena may be distinguished,

whose specific time scales are as follows: the development of the anisotropy induced
by the Joule damping (τJ = ρ/σB2), the establishment of the two-dimensionality
(τ2D = (ρ/σB2)(h2/l2⊥)), the energy transfer between transverse scales (τtu = l⊥/U),

the Hartmann dissipation within the Hartmann layers (τH = (h/B)
√
ρ/σν), and the

viscous effects (τν = l2⊥/ν). Table 1 gives the order of magnitudes of these time
scales for two values of B (0.5 and 5 T). The velocity and the length scales are kept
constant (U = 0.1 m s−1, l⊥ = 10 cm and h = 1 cm). The merits of the high magnetic
fields become clear, since the establishment of two-dimensionality takes place almost
instantaneously (τ2D � τtu) and the viscous effects are negligible (τtu � τν). The
only relevant phenomena then are the energy transfer between the different scales
(time scale τtu) and the Hartmann dissipation (time scale τH ). This explains why
the properties of the turbulent flow in this regime depend on only one basic non-
dimensional parameter, namely

τtu

τH
=

√
σ

ρν
Bh

ν

ul⊥
l2⊥
h2

=
Ha

Re

(
l⊥
h

)2

, (3.1)

as mentioned in a number of previous papers (Lielausis 1975; Sommeria & Moreau
1982).

This parameter is proportional to Ha/Re, since the current density within the core
(∼ σBu/Ha) is Ha times smaller than within the Hartmann layer (∼ σBu). The ratio
between the Lorentz force and inertia in the turbulent core therefore is of the order
of Ha/Re (and not of the order of N = Ha2/Re, the interaction parameter).

It may be considered that, when the ratio τtu/τH is small, the dissipation is small
enough to leave the energy transfer almost unchanged all through the inertial range.
Then, the energy spectrum is that of the expected inverse energy cascade exhibiting a
k−5/3 power law. On the other hand, when the ratio τtu/τH is large, the dissipation is
significant on all relevant scales, so that the energy flux through the cascade cannot
be constant. As a result, a Kolmogorov cascade is impossible even with an energy
transfer towards the large scales. The energy level at any wavenumber k is controlled
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Figure 2. Typical angular velocity signals in the unsteady regime measured at two radial positions.
I increases from 0 to 3 A at t ≈ 58.6 s and B = 4 T.

by the competition between the local inertial transfer mechanism (τtu ∼ 1/
√
k3E(k))

and the local dissipation in the Hartmann layers (τH = (h/B)
√
ρ/σν which is k-

independent). The equality between τtu and τH suggests a k−3 energy spectrum at
wave numbers smaller than the forcing wavenumber ki. It must be noted that such
a k−3 energy spectrum corresponds to an inverse energy cascade modified by the
Hartmann damping and not to a direct enstrophy cascade, as will be pointed out in
§ 5.2. The high magnetic fields are therefore of particular interest, since they provide
the possibility of simple dimensional argument in the interpretation of the dominant
phenomena.

4. Properties of the mean flow
4.1. The unsteady regime

In this section the velocity field during the unsteady phase after a sudden application
of the electric current is characterized. Two angular temporal velocity signals measured
in the outer region (r > Ri) are displayed in Fig. 2. Three different zones may be
defined.

The first zone corresponds to the acceleration of the liquid in a laminar regime. The
dashed line between zones 1 and 2 corresponds to the transition from the laminar
regime to a turbulent regime due to the instability of the shear layer. This kind of
shear flow which exhibits an inflectional mean velocity profile is known to be strongly
unstable. In zone 2, the acceleration of the fluid shows two important features. The
first is the birth of vortices and the second is related to the interactions between
them. The third zone corresponds to the ultimate regime of fluid flow with unsteady
quasi-two-dimensional vortices. The turbulent signal in this zone is more intermittent
than that in zone 2 and could provide information about the large-eddy typical length
scale.
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The evolution of the mean angular velocity during this unsteady regime may be
predicted analytically using a laminar model. Assuming that the electric current and
the fluid velocity have one non-zero component jr and Uθ , the functional dependence
of jr and Uθ in the external fluid annulus can be expressed as

j(r, z, t) = jHa(r, t) exp(−Haz/h) + j(r, t), (4.1)

U(r, z, t) = Uθ(r, t)(1− exp(−Haz/h)), (4.2)

where Uθ is the mean angular velocity of the core flow, z the coordinate parallel to
B, and j the electric current in the core flow.

The property of the Hartmann layer yields

jHa(r, t) = −σBUθ(r, t). (4.3)

The total electric current between the electrodes and the external wall is

I = 2πrhj(r, t) + 2πrh
jHa(r, t)

Ha
. (4.4)

Now, by neglecting the convective and viscous terms, the Navier–Stokes equation in
the core flow is reduced to

ρ
∂Uθ

∂t
= −jcB. (4.5)

We obtain four algebraic equations (4.1)–(4.4) and one differential equation (4.5) for
five unknowns with the initial condition Uθ = 0 at t = 0. The solution for the core
mean velocity in the presence of two symmetric Hartmann layers is

Uθ(r, t) =
I

4πr
√
σρν

(
1− exp

(
−νHa

h2
t

))
. (4.6)

The mean velocity Uθ(t) is plotted in Fig. 2 for two values of r and compared to
the experimental results obtained under the same conditions. Good agreement can be
seen both at the beginning of zone 1 (initial acceleration) and during the quasi-steady
regime (zone 3). The initial agreement is due to the fact that the nonlinear terms of
the Navier–Stokes equation are still negligible in this final phase. In particular, this
agreement confirms the relevance of the simplified equation (4.5) where j is derived
from the Hartmann layer theory. However, a disagreement between the model and
the recorded velocity is seen at the beginning of zone 2. In fact, the time needed
to reach 90% of the stationary mean velocity is shorter than that predicted by the
model (the error bars, as for all the figures presented in this paper, are indicated by
the size of the symbols). The nonlinear terms, which are not considered in this model,
are responsible for transferring energy between the different scales of turbulence. The
resulting mixing of momentum leads to the long term regime being reached in a time
τ1 shorter than τ2 (see Fig. 2). This could be easily checked in (4.6) if the viscosity ν
is replaced by a turbulent viscosity νt (where of course νt > ν).

Notice that, as the exponential term of (4.6) vanishes, the core velocity in zone 3 is
dictated only by the electric current within the Hartmann layers.

4.2. The free shear layer

The radial profiles of the mean angular velocity in the quasi-steady regime are
presented in Fig. 3 by way of example. These profiles are obtained using either
the medium electrodes (Ri = 54 mm, Fig. 3a, c) or the external ones (Ri = 93 mm,
Fig. 3b, d ), at different values of I and B.
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Figure 3. Radial profiles of the angular mean velocity. (a) B = 5 T and Ri = 54 mm, (b) B = 5 T
and Ri = 93 mm, (c) I = 40 A and Ri = 54 mm, (d ) I = 40 A and Ri = 93 mm.

The turbulence generated by the instability of the mixing layer transports a fraction
of the momentum from the fluid annulus to the inner fluid domain. The resulting
entrainment of the fluid in the inner domain is characterized by the decay of the
maximum value of Uθ compared to that predicted by the laminar theory.

It is observed that the wall layer remains stable and thin in a wide range of values
of the key parameters I and B, independently of the injection radius Ri (Fig. 3). The
properties of the shear layer associated with the external set of electrodes could be
different from those of a classical free shear layer, since it develops in the vicinity
of the wall and may interact with the wall side layer. As a consequence, only data
associated with the medium electrodes are presented.

In order to determine the thickness of the shear layer and its dependence on I and
B, mean angular velocity profiles (as those plotted in Fig. 4) are used. Let us define
the thickness, δ‖, of the shear layer as

δ‖ =
∆Uθ

(dU/dr)max
, (4.7)

where ∆Uθ = Uθmax − Uθmin, Uθmin = 0, and Uθmax is the mean velocity value at the
intersection of the maximum slope (dotted line) and the mean velocity profile (solid
line) predicted by the laminar theory (Fig. 4).

It is found that the non-dimensional layer thickness δ‖/h depends on both Re and
Ha according to the relation (Fig. 5)

δ‖/h = C

(
Ha

Re

)−n
(4.8)
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Figure 4. Angular mean velocity profiles plotted for B = 3 T and for I = 10, 20, 30 and 40 A. The
solid lines correspond to the angular mean velocity evolution predicted by the laminar theory and
the dotted lines to the maximum slopes (dUθ/dr)max of the experimental profiles.
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with n in the range between 1
2.3

and 1
2.2

. The best fit suggested by our data for
the constant is C ' 1 (Fig. 5c). This dependence, which is quite different from that
predicted by the laminar theory (δ‖L/h = Ha−1/2), for which Re has no effect, expresses
the effect of turbulence increasing the mixing region as Re increases.

A simple model aiming to explain this experimentally found law (4.8) is proposed.
It is based on the quasi-steady equilibrium between the energy transfer and the
Hartmann damping in the range of wavenumbers k such that k% < k < ki (k% stands for
the integral-length-scale wavenumber and ki for the injection wavenumber, see Fig. 6).
In this model, the energy flux εi is assumed to be injected in the neighbourhood of the
wavenumber ki and locally transferred towards the integral-length-scale wavenumber
k% via an inverse energy transfer mechanism (Kraichnan 1967, 1971; Frisch 1995). In
the Fourier space, the energy spectrum E(k, t) obeys (see for instance Moreau 1990)

∂E(k, t)

∂t
= −2νk2E(k, t)− 2

τH
E(k, t) + T (k, t) + F(k, t), (4.9)

where F is the forcing term (
∫ ∞

0
F(k) dk = εi). Neglecting the viscous term when

k 6 ki, this equation is reduced in a stationary regime to

2

τH
E(k) = T (k) + F(k). (4.10)

Now, integrating (4.10) from 0 to infinity (
∫ ∞

0
F(k) dk = εi and

∫ ∞
0
T (k) dk = 0) yields

εi =
2

τH

∫ ∞
0

E(k) dk. (4.11)

But the local quasi-steady equilibrium between the energy transfer and the Hartmann
damping in a range of wavenumbers k% < k < ki may be expressed by the following
relation:

2

τH
E(k) = T (k), (4.12)

where the transfer function term T (k) may be expressed as

T (k) ' Eu
l
' Ek(kE)1/2. (4.13)

Coupling (4.12) and (4.13) then yields the following expression for the energy spec-
trum:

E(k) = Cτ−2
H k

−3. (4.14)

This relation is valid only for k% < k < ki, where the energy transfer between the
wavenumbers k may be assumed to be local. The constant C of (4.14) depends on
both εi and ki and may be derived from the following dimensional argument. The
local energy flux ε(k) which is not constant because of the Hartmann damping, may
be written dimensionally as

ε(k) = C1τ
−3
H k

−2, (4.15)

and the energy density as

E(k) = CKε(k)
2/3k−5/3. (4.16)

It follows that C = CKC
2/3
1 = CKε

2/3
i τ2

Hk
4/3
i , where CK is the Kolmogorov constant.

Now, assuming that εH corresponds to a non-negligible fraction of εi, we may write

εi ' εH =
2

τH

∫ ki

k%

E(k) dk. (4.17)
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Figure 6. Schematic of an inverse energy transfer with a significant energy dissipation by Hartmann
braking. The energy flux εi =

∫ ∞
0
F(k) dk is injected in the neighbourhood of the wavenumber ki

and a fraction of this flux, εk , is transferred towards the large scales of the flow.

Assuming also that k2
i � k2

% ,

k% ' (CK k
4/3
i ε

−1/3
i τ−1

H )1/2 ' C1/2
K (Lki)

2/3 1

h

(
Ha

Re

)1/2

(4.18)

is obtained, where τ−1
H is replaced by νHa/h2 and

εi ∼ 1

τtu
〈u2〉 ' U3

L
=

(νRe)3

L4
.

This simple model which expresses the equilibrium between the inertial effect and
the Hartmann damping shows that the integral length scale of the flow varies as
(Ha/Re)−1/2. This prediction gives a first explanation of the observed law of the
evolution of the turbulent free shear layer thickness δ‖ ∼ (Ha/Re)−1/2.3.

4.3. The global angular momentum

Another important quantity which may be used to test the theoretical models is the
global angular momentum

L =

∫ rmax

rmin

r2Uθ(r) dr, (4.19)

which is quite significant, since it represents the net effect of the driving torque. In
the elementary case of a steady inertialess flow, the Sommeria–Moreau (1982) model
yields the simple expression

L =
I

4π
√
ρσν

(r2
max − r2

min). (4.20)

It is the direct consequence of the balance between the driving torque and the
opposing (Ohmic and viscous) Hartmann torque (rmin and rmax are the boundaries of
the area where data are available). Note that from this simple balance, the angular
momentum can vary linearly with I and be independent of B.

Figure 7 shows the evolution of L with I for different values of B. The solid
line corresponds to the theoretical expression (4.20). For B > 2 T (Ha > 900), the
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Figure 7. Evolution of the angular momentum L versus I for several values of B. The solid line
represents the angular momentum evolution predicted by the laminar theory. Note that the linear
dependence of L on I , independently of B, at high magnetic fields (B > 2) is a good confirmation
of the two-dimensional character of the flow.

variations of L agree with a linear expression similar to (4.20), but have a slope
slightly smaller (by 15%) than that predicted by (4.20). This deviation, which cannot
be explained by measurement uncertainties, is associated with the extra dissipation
originating from the electrically conducting fraction of the bottom wall. Indeed, the
global conductivity ratio of this fraction, Cw = (σwtw/σh)Scw/S (where Scw is the
area of the conducting fraction), yields a correction factor whose order of magnitude
(' 10%) may well explain of the deviation between the experimental and theoretical
slopes. It should be stressed that the linear dependence of L on I independently of B
is a good confirmation of the two-dimensional character of the flow.

Now, for B < 2 T, the evolution of L with I exhibits a strong dependence on B.
This deviation from the laminar prediction may be interpreted as an effect of Ekman
pumping within the Hartmann layers, which enforces a secondary three-dimensional
flow that is quite sensitive to the Joule dissipation. This centrifugal secondary flow
was modelled recently (Pothérat et al. 2000) and a fairly good agreement with our
experimental results is found. According to this model, the deviation from the B-
independent regime decreases as Ha2 when Ha increases.

5. Properties of the quasi-two-dimensional turbulence
5.1. Spectral analysis

A spectral analysis of the angular velocity fluctuations was performed using Welch’s
averaged periodogram method. The spatial power spectral densities (PSD) are derived
from the temporal velocity signals uθ(t) using Taylor’s hypothesis. The spatial velocity
signals, uθ(x), are obtained from uθ(t) using the instantaneous velocity instead of the
mean velocity, such that x = uθ(t)t. The PSD estimated in the ranges of 0.5 < B < 6 T,
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10 < I < 60 A, and 2.3 < r < 10.9 cm exhibit two important features: first, the
presence of peaks at low frequencies (of the order of 1 Hz) and secondly the existence
of a short range (less than one decade of k) over which a k−n power law seems to
be well defined (Fig. 8). This range is short because it is squeezed between the peaks
associated with the large wave scales (k` . 0.1 cm−1) and the wavenumber ki which
characterizes the forcing mechanism on small scales (ki ' 1 cm−1).

It is quite clear that the energy is transferred towards the large scales in this quasi-
two-dimensional flow. Figure 8(b) illustrates two examples of compensated energy
spectra as k3E(k), where ranges close to k−3 and close to k−5/3 can be distinguished.
The peaks observed at small wavenumbers (low frequencies) are the signatures of
large coherent structures (Fig. 8a).

The shape of the energy spectrum in the intermediate wavenumber range (k` < k <
ki) is determined by both the energy transfer mechanism between neighbouring k and
the local damping mechanism acting within the Hartmann layers. The spectra exhibit
a range close to k−5/3 for low values of B and I (typically for B 6 0.5 T and I 6 20 A).
Under such conditions, Hartmann damping is small enough to force the energy flux
ε towards the large scales to be almost constant (Kraichnan 1967, 1971; Frisch 1995;
Lesieur 1997). For larger values of B and I , a range close to k−3 is observed within
the shear layer, where the turbulence is fully developed. Under these conditions, the
dissipation in the Hartmann layers is so significant on all relevant scales that ε cannot
be constant. We, thus, believe that the leading effect is the competition between the

nonlinear transfer associated with a local transfer time τtu ∼ 1/
√
k3E(k) and the

Hartmann damping associated with the k-independent time τH . Indeed, the equality
of τtu and τH yields such a k−3 law and more precisely, suggests the relation

E(k) = C
σB2

ρ

ν

h2k3
= CHa2 ν2

h4k3
, (5.1)

where the constant C should be universal. Our numerous data suggest a value close
to 1.25× 10−2.

A remark on the finite size of the probes should be added. The distance d between
two neighbouring platinum wires should be taken into account in the PSD calcula-
tions. Indeed, the measured velocity fluctuations are the product of the true velocity
fluctuations multiplied by a correction factor Cf = sin(kd/2)/kd/2 (see, for instance,
Citriniti & George 1997). This correction is only significant in the noise wavenumber
range (k & 0.8 cm−1).

5.2. Energy transfer within the Fourier space

Many experiments and numerical simulations have been performed to study the
inverse cascade of energy in two-dimensional turbulent flows (see, for instance, Som-
meria 1986 and Paret & Tabeling 1997 for experiments and Zikanov & Thess 1998
and Crocco & Orlandi 1985 for numerical simulations).

Equation (4.12) shows that the kinetic energy of the core flow is controlled by the
term T (k). This term corresponds to the global energy transfer to any wavenumber
k by its neighbours. It results from the nonlinear interactions of the Navier–Stokes
equation.

For two-dimensional isotropic turbulence, T (k) could be evaluated using triple-
velocity correlations at two points as (see, for instance, Nguyen Duc 1988)

T (k, t) =
k2

4

∫ ∞
0

K(r) r [krJ0(kr)− 2J1(kr)] dr, (5.2)
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Figure 8. (a) Frequency spectra of the velocity fluctuations measured within the free shear layer
r ' 68.5 mm. The low frequency peaks are the signature of the large coherent structures. (b) Two
typical compensated spatial velocity spectra k3E(k) exhibiting in the inertial range a power law
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Figure 9. Evolution of the energy transfer term T (k) and its associated spatial spectrum E(k). This
example illustrates the presence of an inverse energy transfer from large to small wavenumbers
in the inertial range. The energy is withdrawn where T (k) < 0 and supplied to modes k where
T (k) > 0.

where

K(r) = 〈u(x, 0, t) u(x, 0, t) u(x+ r, 0, t)〉 (5.3)

is a velocity triple-correlation function at two points separated by a distance r, and
where J0 and J1 are Bessel functions.

Figure 9 shows a typical transfer function T (k) and the corresponding wavenumber
spectrum for B = 0.5 T and I = 10 A. This example illustrates the presence of an
inverse energy transfer (as previously obtained by Sommeria 1986 and Nguyen Duc
& Sommeria 1988) from large to small wavenumbers in the inertial range. The energy
is withdrawn where T (k) < 0 (close to ki, corresponding to the instability of the free
shear layer) and supplied to modes k where T (k) > 0. The negative part of T (k) at
low wavenumbers (1/l > 0.1 cm−1, outside the inertial range) might be considered as
a direct redistribution of the energy from the large to the smallest scales. However,
the vorticity maps which have been constructed (see example Fig. 14) clearly show
that the maximum size of the large eddies does not exceed half of the box radius.
This seems to exclude the presence of a condensation phenomenon (Paret & Tabeling
1997) and, hence, a direct energy cascade on large scales. The fact that the maximum
distance r1 over which the triple-velocity correlations were performed is less than 9 cm
suggests that the negative part of T (k) observed at low wave numbers has no real
significance and could be the consequence of the non-local energy transfer between
different modes.

5.3. Properties of the large-scale structures

The properties of the large-scale structures in such flows is of primary interest. In fact,
all the transfer phenomena take place in the regions where the shear develops and
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the large-scale eddies fed by an inverse energy transfer dominate the flow dynamics.
Alboussière et al. (1999) demonstrated experimentally (via direct visualizations of the
free-surface deformations) that the initial instability of the mixing layer is made up of
about 30 periodic eddies (typical length scale ∼ 2 cm) which merge rapidly to form a
smaller number of large eddies (2 or 3 with a length scale of ∼ 10 cm). In this section,
the influence of the two main parameters, I and B, both on the evolution of the eddy
convective velocity and on their average number over one turnover time is studied.

A set of 30 equally spaced probes is inserted into the bottom plate, along an
arc of a circle of radius R1 = 6.85 cm (Fig. 1b) in order to measure the space–time
correlations of the velocity signals. We expect that the trajectory of the large-vortex
centres is close to this set of probes. In fact, the velocity signals displayed in Fig. 10
(which are numerically filtered to focus on the large scales only) clearly show that the
amplitude of the angular component is much smaller than the radial one. Moreover, it
is noticeable that the spatial correlations obtained with the radial velocity component
are more significant than those with the azimuthal velocity component.

The transit time mj∆t needed by a large structure to travel from the angular position
θ1 to θj corresponds to the integer mj which maximizes the integral (as illustrated in
Fig. 11)

Int(mj) =

∫ t1

t0

ur(θ1, t) · ur(θj, t+ mj∆t) dt (5.4)

where the radial temporal velocity signals ur(θ1, t = t0 → t1) and ur(θj, t = t0 +m∆t→
t1 +m∆t) are recorded simultaneously at the positions θ1 and θj, respectively (j = 1, 30
corresponds to the probe locations) during a time t1 +m∆t− t0 (∆t is a time step fixed
by the data sampling frequency).

A maximum of 30 integrals Int(mj) could be computed, and for each of them, a
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about 90% of the auto-correlation for θ = π/5, suggesting that the lifetime of the large eddies
corresponds at least to their transit time over one turnover time.

transit angular velocity Ωj is determined by the relation

Ωj =
θj − θ1

mj∆t
. (5.5)

By averaging these angular velocities Ωj, an estimation of the angular transit velocity

ΩS = (1/j)
∑j

1 Ωj of the large-scale structures is obtained.
The evolution of ΩS with B and I is shown in Fig. 12. The influence of B remains

almost negligible, except for small values of B and large values of I . This is quite
consistent with the general idea of the role of the magnetic field being essentially
to act to establish two-dimensionality. On the contrary, a strong influence of the
electric current I is observed, so that ΩS is proportional to I and thus to the flow
mean velocity Uθ . Figure 11 also shows that for θj − θ1 . 0.65 rad (' π/5) the
cross-correlation functions are about 90% of the auto-correlations independently of I
and B. This suggests that the large-eddy lifetime at least corresponds to their transit
time over one turnover time.

Figure 13 shows an example of linear frequency velocity spectra estimated at
different radial locations (42.5 6 r 6 89.5 mm) for B = 5 T and I = 20 A. The spectra
are normalized to the maximum value of the PSD in the same distribution. Assuming
the coherent structures to be frozen in the flow, it is possible to construct a scenario
which gives an estimation of the number of large eddies.

Let us focus on the peaks, whose amplitude is close to unity. Note that the frequency
of these peaks is approximately 2 Hz, except in the range of 56.5 . r . 62.5 mm,
where it is close to 4 Hz. We may assume that the probes located in this area capture
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Figure 14. Reconstructed vorticity field over 6 turnover times under the same conditions as in
figure 12 (B = 5 T and I = 20 A), confirming the presence of four large eddies. For clarity, the
vorticity field is plotted on a straight plane.

four structures passing during one turnover time, whereas two eddies are detected by
the others. In agreement with this observation, the presence of two pairs of small
and large eddies in the basic flow could be assumed. In most cases, the picture is not
that simple and an estimation of the number of coherent structures cannot possibly
be obtained from a spectral analysis of the turbulent flow. In order to examine
the evolution of the number of large structures, we reproduced the whole velocity
field in the box by successive rotations of the velocity curves measured on the line
probes (angular position θ0) at times t0 + n∆t (n is the number of rotations). At each
time t0 + n∆t, the corresponding velocity profile is plotted at the angular position
θ0, whereas the profile recorded at the time t0 is plotted at the angular position
ΩSn∆t+ θ0. Finally, to make the counting of the large eddies easier, the vorticity field
is computed by taking the cylindrical curl of the velocity field and then plotting on a
straight plane (Fig. 14).

The vorticity field constructed for the same experimental conditions as those in
Fig. 13 confirms that the number of large eddies is 4. Similar computations for
different values of B and I allow determination of the variations of the number of
these large eddies NS (Fig. 15a). This points out again the leading role of I , while B
has a weak effect on NS . Comparison of figures 15(a) and 14(b) shows the existence
of a reasonable correlation between NS and the ratio τtu/τH . Figure 15(c) presents the
evolution of NS × (Re/Ha)0.4 versus (Re/Ha) suggesting that NS ' 80(Ha/Re)1/2.5.
As expected, the number of large coherent structures driven by the flow when the
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NS ' 80 (Ha/Re)1/2.5.

turbulence is fully developed results from a competition between the inertial effects
and the damping effect in the Hartmann layers.

6. Concluding remarks
A forced quasi-two-dimensional non-homogeneous turbulence in an electrically

conducting fluid subject to a uniform magnetic field is investigated. A detailed
quantitative analysis of this statistically steady MHD turbulent shear flow at low
Rm is provided. The mixing zone between the moving external annulus and the
inner domain is the region of greatest interest, where the turbulence develops and
controls the transport of any quantity. It is found that the free shear layer thickness
δ‖ is increased by about two order of magnitudes by turbulence, resulting in an
enhancement of momentum transport across the layer. Its non-dimensional value
δ‖/h depends on both Ha and Re as (Ha/Re)−1/2.3 instead of Ha−1/2 as predicted by
the laminar theory.

The angular momentum L is found to be in good agreement with the prediction
of the two-dimensional model when the magnetic field is large enough to suppress
any deviation from two-dimensionality. It is B-independent and varies linearly with
the electric current I . The moderate disagreement between the experimental and the
theoretical laws L(I) is a result of the effect of the extra dissipation due to the small
fraction of the bottom wall which is electrically conducting.

The velocity field is dominated by a small number of large coherent structures fed
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by the inverse energy transfer that is characteristic of quasi-two-dimensional forced
turbulent flows. Their number seems to be proportional to the ratio Ha/Re and
their transit velocity is slightly above Uθmax/2. For wavenumbers ranging between
the large-structure wavenumber k` and the forcing wavenumber ki, an inertial range
exhibits a k−n power law where n may be close to either 5/3 or 3. Our interpretation
of this inertial law is based on the importance of the Hartmann dissipation (timescale
τH ) in comparison with the eddy turnover time (timescale τtu). When this dissipation
is negligible, a power law close to k−5/3 is observed as conjectured by Kraichnan.
But when it is significant, the quasi-steady equilibrium at any wavenumber k implies
an equality of τtu and τH and leads to the k−3 law. This explains the proportionality
between C in the law E = Ck−3 and the non-dimensional parameter Ha/Re(l⊥/h)2.

These experiments in a high magnetic field were performed in one of the magnet
sources (M5) of the Grenoble High Magnetic Field Laboratory. We are very grateful
to V. Uspenski from Moscow University for his effective contribution during the first
experiments. Technical assistance by R. Bolcato is gratefully acknowledged. We would
also like to thank A. Pothérat, J. Sommeria and T. Alboussière for fruitful discussions.
This work was supported first by the European Community under contract No. ERB-
CIPA-CT 93-0080 and then by the French Atomic Energy Commission (CEA, centre
d’études de Cadarache) under contract No. 5010 6 7B036910.

REFERENCES

Alboussière, T., Neubrand, A. C., Garandet, J. P. & Moreau, R. 1997 Segregation during
horizontal Bridgman growth under an axial magnetic field. J. Cryst. Growth 181, 133–144.

Alboussière, T., Uspenski, V. & Moreau, R. 1999 Quasi-two-dimensional turbulent shear layers.
Expl Therm. Fluid Sci. 20, 19–24.

Alemany, A., Moreau, R., Sulem, P. & Frish, U. 1979 Influence of an external magnetic field on
homogeneous MHD turbulence. J. Méc. 18, 277–313.

Citriniti, J. H. & George, W. K. 1997 The reduction of spatial aliasing by long hot-wire anemometer
probes. Exps. Fluids 23, 217–224.

Crocco, L. & Orlandi, P. 1985 A transformation for the energy-transfer term in isotropic turbu-
lence. J. Fluid Mech. 16, 405–424.

Davidson, P. A. 1995 Magnetic damping of jets and vortices. J. Fluid Mech. 299, 153–186.

Davidson, P. A. 1997 The role of angular momentum in the magnetic damping of turbulence.
J. Fluid Mech. 336, 123–150.

Davoust, L., Cowley, M. D., Moreau, R. & Bolcato, R. 1999 Buoyancy-driven convection with
a uniform magnetic field. J. Fluid Mech. 400, 59–90.

Frisch, U. 1995 Turbulence, the Legacy of A. N. Kolmogorov. Cambridge University Press.

Hunt, J. C. R. & Ludford, G. S. S. 1968 Three-dimensional MHD duct flows with strong transverse
magnetic fields. Part 1. Obstacles in a constant area channel. J. Fluid Mech. 33, 693–714.

Kljukin, A. A. & Kolesnikov, Yu. B. 1989 MHD instabilities and turbulence in liquid metal shear
flows. Proc. IUTAM Symposium ‘Liquid Metal Magnetohydrodynamics (ed. J. Lielpeteris & R.
Moreau), pp. 449–454. Kluwer.

Kolesnikov, Yu. & Tsinober, A. B. 1972 An experimental study of two-dimensional turbulence
behind a grid. Fluid Dynamics 9, 621–624.

Kraichnan, R. H. 1967 Inertial ranges in two-dimensional turbulence. Phys. Fluids 10, 1417–1423.

Kraichnan, R. H. 1971 Inertial range transfer in two and three dimensional turbulence. J. Fluid
Mech. 47, 525–535.

Lenhert, B. 1955 Instability of laminar flow of mercury caused by an external magnetic field. Proc.
R. Soc. Lond. A 233, 299–301.

Lesieur, M. 1997 Turbulence in Fluids. Kluwer.

Lielausis, O. A. 1975 Liquid metal magnetohydrodynamics. Atomic Energy Review 13, 527–581.

Moreau, R. 1990 Magnetohydrodynamics. Kluwer.



MHD quasi-two-dimensional turbulent shear flows 159

Mück, B., Günter, C., Müller, U. & Bühler, L. 2000 Three-dimensional MHD flows in rec-
tangular ducts with internal obstacles. J. Fluid Mech. 418, 265–295.
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